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Introduction 

Aspheric IR optics 

1960 1970 1980 1990 2000 2010 

Off-axis Mirrors Freeform surfaces 

Triangular microprisms  

Ultra-precision machining are those 

technologies by which the  

highest possible dimensional accuracy is, 

or has been achieved (Taniguchi, 1983 ) 

• Ultra-Precision Machining (UPM) 
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Introduction 

• Challenges for UPM quality assurance   
– Limited metrology and methodology for quality control (Dornfeld, 2006) 

– Sensor-based in-process monitoring system of process monitoring and 

quality control (Abellan-Nebot, 2010) 
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Demand 
• Suitable sensor based monitoring system 

for precision machining processes 
 

• Effective incipient change detection 

analyzing weak signal of UPM compared 

with conventional machining processes 



Surface defects in ultra-precision machining 

 
 

• System vibrations 

– Chatter: tool, toolholder and spindle together vibrate at some natural 

frequency 

– Scratches on the surface, ruining the geometric acquirement of product 
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One important effect that is not considered in the model above is built up edge. Under most cutting 

conditions, some of the cut material will attach to the cutting point. This tends to cause the cut to be 

deeper than the tip of the cutting tool and degrades surface finish. Also, periodically the built up 

edge will break off and remove some of the cutting tool. Thus, tool life is reduced. In general, built 

up edge can be reduced by:Increasing cutting speed 

Decreasing feed rate 

Increasing ambient workpiece temperature 

Increasing rake angle 

Reducing friction (by applying cutting fluid) 

Rippled surface finish 

Most common surface defects (e.g. surface scratches and variations) are 

due to abnormal vibration (e.g. chatters) and built-up edge (BUE)  

Scratch 



Surface defects in ultra-precision machining 

• Built-up edge (BUE) 

– Causing deeper depth of cut and degrading surface finish 

– In UPM, surface sometimes rubs against built-up edge, leading to 

surface quality deterioration 
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BUE 

 Mean Ra 

Region 1 51nm 

Region 2 49nm 

Region 3 40nm 

Scratch 

Deteriorated surface due 
to BUE  



CMP experiment setup 
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UPM experiment setup 

• Sensor setup 

– Vibration sensor (3-axis) 

– Force sensor (3-axis) 

– Acoustic emission (AE) sensor 
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Scratch 

Surface variation 
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Application in ultra precision machining 

• UPM experiment 

– Depth of cut (5, 10, 20, 25 μm) 

– RPM (500, 1000, 2000 rev/min) 

– Feed rate (1.5, 3, 6 mm/min) 
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DPGSM-based change detection in UPM 
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Limitations of traditional detection methods 

• Traditional statistical change detection involves testing a 

hypothesis  

– Ho: θ = θo against Ho: θ ≠ θo  

– On parameters θ of the distribution or a representation of a stochastic 

process, such as  x(t+1)=f(x(t), θ)  

• For most detection methods, a stable operation implies 

stationarity, i.e., θ is time-invariant 

• However, most real-world processes are highly 

nonstationary, i.e., θ varies over time 
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From a statistical standpoint, change detection 

process involves testing a hypothesis, H0: θ = 

θ0 against H1: θ ≠ θ0 on the parameters θ of the 

distribution or some other quantifiers of the 

underlying state vector x.  



Limitations of traditional detection methods 

• Autocorrelation structure change  

– Shifting trends (first order) (De Oca, 2010) 

– Volatility (second order)  (Killick, 2013) 

– Eigenstructure of state space model (Basseville, 1987) 

• Frequency and spectrum analysis 

– Spectral-based change detection (Choi et al., 2008) 

– Wavelet based control chart (Guo, 2012) 
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Few methods reported for change detection in transient 

processes because of the difficulty to capture the complex 

nonstationary behaviors 



Dynamic intermittency 
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Phase space for area-preserving map of intermittent signal  

(Artuso, et al. 2003) 

Intermittency is a common nonstationary (transient) behavior, 

consisting of intervals of regularity interrupted at random by bursts as 

the trajectory is re-injected into the chaotic part of the phase space. 
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Dirichlet Process-based Gaussian State Machines 
(DPGSM) 
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Reconstructed state space 

trajectories 

Show overall representation (show an 

animation with a nonstionary  (asceinding-

desceinding notes?)  time series on left and the 

state space on right, next fill the state space 

with gaussian clusters and the transitions. 

 

 Next, show the time series evolving into a  

different characterisitc. Now show the new 

state space and fill with Gaussians and their 

transitions. 

 

Say that we can detect this change in transient 

regime. 

Dirichlet process based transition 

matrix generation 

Change detection using 

multivariate control chart setup 
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Dirichlet process-based Gaussian mixture 

• Chinese restaurant process 
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• 𝑥𝑖 -data points  
• 𝜃𝑖- distribution parameter drawn from 

unknown distribution G 

Cluster 1 Cluster 2 

- Tables represent infinite clusters 

- Customer i represents data 𝑥𝑖  

𝑃 𝑐𝑖 = 𝑘 ≤ 𝐶|𝑐−𝑖 =
𝑛𝑘

𝑛−1+𝜗
  if data belongs to existing cluster 

𝑃 𝑐𝑖 = 𝐶 + 1|𝑐−𝑖 =
𝜗

𝑛−1+𝜗
  if data belongs to new cluster  

𝜗

𝜗 + 𝑛 − 1
 

𝑛𝑘
𝜗 + 𝑛 − 1
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DPGSM change detection 
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DPGSM change detection 

• Distribution of transition element 

– Proposition 1: The Bayesian posterior distribution of the vector πj, 

given the counts 𝒁𝑗 = 𝒛𝑗
(𝑖)

 (multinomial distributed), follows a 

Dirichlet distribution 

 

 

• Calculation of 𝒛𝑗
(𝑖)
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𝒛𝑗
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𝑡
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𝑃 𝑐𝑡 = 𝑘 𝑥𝑡, 𝜣 = 𝑏𝑓(𝑥𝑡|𝜃𝑘) where 

 𝑏𝑓(𝑥𝑡|𝜃𝑘)
𝐾

𝑘=1
= 1 

, b is an appropriate normalized constant 

which makes 
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= 
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𝑗
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𝑧𝑗𝑘
(𝑖)
=  𝑃 𝑐𝑡 = 𝑗 𝑥𝑡, 𝜣 × 𝑃 𝑐𝑡+1 = 𝑘 𝑥𝑡+1, 𝜣 + 1

𝑖−1

𝑡=𝑖−𝐿+1

 



Multivariate control chart 

• Confidential level 

– In DPGSM change detection, we have K control charts (K as cluster 

number) 

– 𝛼𝑗 = 1 − 1 − 𝛼  
𝑤𝑗

𝐾  is the significance level of row j, set by the family-

wise error rate (FWER), i.e. FWER= Pr(rejecting at least one Hj| 

Hj ∈ Ho) = α, where Ho={H1, H2,… HK} 

• Measurement in multivariate control chart 
 

–   

 

– 𝑑𝑗
2 = (𝝅 

𝑗
− 𝝅𝑗0) 𝑺𝑗

−1(𝝅 
𝑗
− 𝝅𝑗0)

𝑇 ~ 𝜒2
K  distribution 

4/1/2014 20 

𝜋 𝑗𝑘 = 𝜋𝑗𝑘|𝒛𝑗
(𝑖)
=
𝑧𝑗𝑘
(𝑖)

 𝑧𝑗𝑘
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Control Chart for transition row πj Simulated Data 

Normal condition Out of control  
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Step 1: Estimate transition matrix: 𝜋 𝑗𝑘|𝒛𝑗
(𝑖)
=

𝑧𝑗𝑘
(𝑖)

 𝑧
𝑗𝑘
(𝑖)𝐾

𝑘=1

 

Step 2: Calculate Hotelling statistics 𝑑𝑗
2 for each row 𝑗 

Step 3: Monitor the process and estimate 𝐴𝑅𝐿1 based on out-of-control points 

The overall on-line change detection, after consistent estimation of 𝜣, 

{𝑈𝐶𝐿𝑗} and 𝜶 based on a training set, may be summarized as follows: 



Benchmark case 
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ARMA(2,1) model  at ∼ (N(0, δσ2
a )) 
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where 𝑖𝑚 is the time index of each 

breakpoint, 𝑚=1, 2,…,𝑀, 𝑖0 =1, 

𝑖𝑀=N (N is the length of the time 

series). 

xi=

f(x−i;φ
(1),ψ(1))      i0<i<i1

…
f(x−i;φ

(𝑚),ψ(m))      im−1<i<im

…
f(x−i;φ

(M),ψ(M))   i𝑀−1<i<iM

 

{𝑖0, 𝑖1,… 𝑖𝑚,…, 𝑖𝑀} as a sequence 

of order statistics such that each im 

follows a uniform distribution 

UNIF(0, N).  



Benchmark case 
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Detection for surface roughness variation 

• Surface variation in three 

regions 

1. Small Ra (~100nm)  

2. High Ra (~150nm)  

3. High Ra (~ 150nm) with 

larger variance 
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Detection for surface scratch 

• Surface scratch and vibration signal 

4/1/2014 25 

1 2 3 4 5

x 10
4

-40

-20

0

20

40

500 1000 1500 2000 2500 3000 3500 4000 4500

-1

0

1

500 1000 1500 2000 2500 3000 3500 4000 4500
5

10

15

500 1000 1500 2000 2500 3000 3500 4000 4500
2

4

6

500 1000 1500 2000 2500 3000 3500 4000 4500

-0.5

0

0.5

M
ea

n
 

V
ar

ia
n
ce

 
K

u
rt

o
si

s 
S

k
ew

n
es

s 

Scratch 

Region 1 Region 2 



 

0 200 400 600 800 1000 1200
4

6

8

10

12

14

16

18

Time index

O
u

tp
u

t

 

 

prediction

observation

Detection for surface scratch 

4/1/2014 26 

R2 =  0.7425 

500 1000 1500 2000

6

8

10

12

14

A
m

p
lit

u
d

e

Time Index

Predicted 
feature 

Expected delay of detection(ms) comparisons 

EWMA SD-WCUSUM DPGSM 

164 72 24 

GP-DPGSM method discovers scratch appearance in 48 ms 
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Change detection of surface deterioration 

• Chemical Mechanical Planarization 

(CMP)  process experiment  

– Lapped coppers (Ra 10nm~15nm) 

were polished on Buehler in 3 

minutes of each interval 

– Platen speed 250 RPM, head speed 

60 RPM and download force 4 lbs 
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Buehler (model Automet® 250) 

with 3-axis accelerometer  



Change detection of surface deterioration 

• Pad wear and surface deterioration 

– After 3 minutes, the average Ra improved to around 15 nm 

– Pad wear was then accelerated worn by soaking the pad in slurry, 

followed by air drying 

– After 12 minutes polishing, it was noticed that significant glazing of 

polishing pad observed (Fig. 2) as well as the scratch on wafer were 

observed and finish degrades to Ra~22nm 
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Change detection of surface deterioration 
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Change detection for music pattern changes 

• Case 1 

 
 

• Case 2 
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Normal condition Key signature change 
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http://www.youtube.com/watch?v=J4fBIkZ3WNk


Change detection in Ragas 
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General types of Raga music  

Change detection 1: Sequence 

change with ascending and 

descending scales 

Change detection 2: Scale 

change with missing notes 

Subtle changes in intermittent music signals, namely scores sequence 

change  and music scale change, are considered. 



Change detection in Ragas 
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Detection of incipient sleep apnea 

• Sleep apnea detection using 

ECG signal  
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Conclusions 
 

• We represent nonlinear nonstationary (intermittency) signal within 

precision machining processes as a stochastic mixture of Gaussian 

clusters with Markov transition matrix  
 

• Intermittent changes in surface uniformity are efficiently identified by 

DPGSM, and it could detect surface damage (scratch) almost an order 

of magnitude earlier compared to existing change detection methods 

(EWMA and SD-WCUSUM) 
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Further studies 
 

• Parameters selection 

– Selection of window length 𝑳 is crucial to derive consistent estimates of 

the transition matrix elements  

– Selection of the concentration parameter 𝝑 of Dirichlet process to 

ensure generation of proper Gaussian mixtures 
 

• The transition process may be more closely approximated using a 

semi-Markov formulation and the representation needs to be 

modified to better capture the underlying dynamics 
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Q & A 

4/1/2014 37 

Contact me: 
Zimo Wang 
Ph.D. candidate  
Industrial Engineering 
zimo.wang.1987@gmail.com 


