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* Introduction of change detection in precision manufacturing
processes

* Change detection in UPM & CMP

 DPGSM-based detection in sensor-based monitoring system
during precision manufacturing

 Conclusions
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Introduction

 Ultra-Precision Machining (UPM)
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Introduction

« Challenges for UPM quality assurance

— Limited metrology and methodology for quality control (Dornfeld, 2006)
— Sensor-based in-process monitoring system of process monitoring and

quality control (Abellan-Nebot, 2010)

Demand
 Suitable sensor based monitoring system
for precision machining processes

 Effective incipient change detection
analyzing weak signal of UPM compared
with conventional machining processes
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Surface defects in ultra-precision machining

Most common surface defects (e.g. surface scratches and variations) are
due to abnormal vibration (e.g. chatters) and built-up edge (BUE)

« System vibrations

— Chatter: tool, toolholder and spindle together vibrate at some natural
frequency

— Scratches on the surface, ruining the geometric acquirement of product
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Surface defects in ultra-precision machining

 Built-up edge (BUE)
— Causing deeper depth of cut and degrading surface finish

— In UPM, surface sometimes rubs against built-up edge, leading to
surface quality deterioration

Deteriorated surface due
to BUE

\

Scratch
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CMP experiment setup

Vibration signal
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UPM experiment setup
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Application in ultra precision machining
Sa|mpre H8| | | | Sample 30

« UPM experiment
— Depth of cut (5, 10, 20, 25 um)

— RPM (500, 1000, 2000 rev/min) §
— Feed rate (1.5, 3, 6 mm/min) é
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DPGSM-based change detection in UPM
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Limitations of traditional detection methods

 Traditional statistical change detection involves testing a
hypothesis
— H,: 0=06,against H_: 6 # 0,
— On parameters 4 of the distribution or a representation of a stochastic
process, such as x(t+1)=f(x(t), 6)
* For most detection methods, a stable operation implies
stationarity, I.e., @ Is time-invariant

* However, most real-world processes are highly
nonstationary, 1.e., @ varies over time
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Limitations of traditional detection methods

 Autocorrelation structure change
— Shifting trends (first order) (De Oca, 2010)
— Volatility (second order) (Killick, 2013)
— Elgenstructure of state space model (Basseville, 1987)

* Frequency and spectrum analysis
— Spectral-based change detection (Choi et al., 2008)
— Wavelet based control chart (Guo, 2012)

Few methods reported for change detection in transient
processes because of the difficulty to capture the complex
nonstationary behaviors

4/1/2014 13



Dynamic intermittency

Window 1l Window 2
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State space reconstructed intermittent signal

Intermittency is a common nonstationary (transient) behavior,
consisting of intervals of regularity interrupted at random by bursts as
the trajectory is re-injected into the chaotic part of the phase space.
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Dirichlet Process-based Gaussian State Mac

Reconstructed state space Dirichlet process based transition
trajectories matrix generation
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Dirichlet process-based Gaussian mixture

Chinese restaurant process Time series  Clusters & pdf
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DPGSM change detection

Simulated Data
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DPGSM change detection

 Distribution of transition element
— Proposition 1: The Bayesian posterior distribution of the vector z;,
given the counts Z; = z; (multinomial distributed), follows a
Dirichlet distribution

i K (D
1, 1k oz, @\ _ Mk=1TC})
f (m17”)= sy k= Tk B (7°) = P, )

e Calculation of z]@
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where  P(c; = klx;, @) = bf (x;|0x), b is an appropriate normalized constant

K
which makes zk=1bf(xt|9") =1
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Multivariate control chart

» Confidential level
— In DPGSM change detection, we have K control charts (K as cluster
number)

W Il

— a; = 1— (1 — a) « isthe significance level of row j, set by the family-
wise error rate (FWER), I.e. FWER= Pr(rejecting at least one Hj|
H; € H,) = a, where H,={H,, H,,... Hc}

« Measurement in multivariate control chart
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Multivariate control chart

The overall on-line change detection, after consistent estimation of @,
/UCL;} and a based on a training set, may be summarized as follows:

A

Step 1: Estimate transition matrix: ; k|z(‘) Tk
! oK,z

Step 2: Calculate Hotelling statistics djz for each row j

Step 3: Monitor the process and estimate ARL, based on out-of-control points
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Benchmark case

Model:

20 ( Ry ig<i<i,
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15-  Normal lindow series).
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Time Index follows a uniform distribution
UNIF(0, N).

ARMA(2,1) model a, ~(N(0, 5a2,))
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Benchmark case
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Detection for surface roughness variation

e Surface variation in three

regions
1. Small Ra (~100nm)
2. High Ra (~150nm)

3. HighRa (~ 150nm) with =] =

larger variance
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Detection for surface scratch

 Surface scratch and vibration signal
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Detection for surface scratch

——prediction
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Expected delay of detection(ms) comparisons
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164 72 24

GP-DPGSM method discovers scratch appearance in 48 ms
ahead of EWMA and 140 ms earlier than SD-WCUSUM.
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Change detection of surface deterioration

Chemical Mechanical Planarization
(CMP) process experiment

— Lapped coppers (Ra 10nm~15nm)
were polished on Buehler in 3 ot
minutes of each interval

— Platen speed 250 RPM, head speed
60 RPM and download force 4 Ibs Fckes

Workpiece
Holder
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Power Supply
Enclosure
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Workholder
Spindle

Sensor Rest

Sensor
Enclosure

Polishing

Platen
-]

Buehler (model Automet® 250)
with 3-axis accelerometer
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Change detection of surface deterioration

 Pad wear and surface deterioration

— After 3 minutes, the average Ra improved to around 15 nm

— Pad wear was then accelerated worn by soaking the pad in slurry,
followed by air drying

— After 12 minutes polishing, it was noticed that significant glazing of
polishing pad observed (Fig. 2) as well as the scratch on wafer were
observed and finish degrades to Ra~22nm

Ra~22nm

Glazed
area

After 3 min After 12 min Glazed areas on pad
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Change detection of surface deterioration
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iﬁ 0 EWMA | SD-WCUSUM | DPGSM
g 10 2941 2262 34
3ot F,‘ R o d SRRl DPGSM discovers surface deterioration
Irsgt run ad wear . .
40— ; I ) with an order of magnitude (more than 2
100 2000 3000 4000 000 6000 .
Amplitude sec) earlier than SPC methods tested
10_3 X-vibr_agf Amplitude spectrum « 10_3 X-vibr_nd Amplitude spectrum
58 5
4 4
:3 :3
3 >
2 2
T e 1 || ———— i ———— ~ i
00 50 100 150 2100 2I50 3]00 OO 50 100 150 2100 2I50 3IOO
Frequency(Hz) Frequency(Hz)

4/1/2014 29



Change detection for music pattern changes

e Casel '
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Comparison of delays for change detection (ms)
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http://www.youtube.com/watch?v=J4fBIkZ3WNk

Change detection in Ragas
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General types of Raga music

Subtle changes in intermittent music signals, namely scores sequence
change and music scale change, are considered.
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Change detection in Ragas

Signal Signal

Amplitude

Tinfle (s)
Morlet Wavelet Scalogram (8QdB, log scale, bw parameter=5)
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http://www.youtube.com/watch?v=QRbBmOyc1IU
http://www.youtube.com/watch?v=y2zWU1yaHV8

Detection of incipient sleep apnea

 Sleep apnea detection using Sleep Apnea
ECG signal :
Monitored ECG signal with
Incipient sleep apnea
T Normal | Breath |

1.5 breathing 17 disorder Normal Breathing Blocked Airways
L IR
-}
S 0.5 J Delay for detection (ms) of sleep apnea
=
< 0 M EWMA | SD-WCUSUM | DPGSM

~O-SH U Ll 1765 12 11

6000 12000

Time Index
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Conclusions

* \We represent nonlinear nonstationary (intermittency) signal within

precision machining processes as a stochastic mixture of Gaussian
clusters with Markov transition matrix

 Intermittent changes in surface uniformity are efficiently identified by
DPGSM, and it could detect surface damage (scratch) almost an order

of magnitude earlier compared to existing change detection methods
(EWMA and SD-WCUSUM)
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Further studies

 Parameters selection

— Selection of window length L is crucial to derive consistent estimates of
the transition matrix elements

— Selection of the concentration parameter ¥ of Dirichlet process to
ensure generation of proper Gaussian mixtures

« The transition process may be more closely approximated using a
semi-Markov formulation and the representation needs to be
modified to better capture the underlying dynamics
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