

Pitch Perfect Threading

Pitch Perfect Threading

Pitch Perfect Threading

Pitch Perfect Threading

Process considerations

Threading methods

Existing

- Is the process stable today
- Is the productivity maximized
- Is chip control acceptable
- Is the quality of the thread acceptable

Always ask:

"Should this component be thread turned or thread milled"

• New

- Is the component
 - symetric/ asymetric
 - stable/vibration sensitive

What are the requirements

- Finish
- Tolerances
- -Will I have clearance behind the thread or is it against a shoulder/blind hole
- Is this material easy or difficult from a chip control point of view
- -Is the material work hardening

Basics in threads

Our standard profiles

Application	Insert	Thread form	Thread type	Code
General threads		60°	ISO metric American UN	MM UN
Pipe threads		55°	WhitworthNPTBritish Standard (BSPT)NPTFAmerican National Pipe Threads	WH, NT PT, NF
Food and fire		30°	Round DIN 405	RN
Aerospace		60°	MJ UNJ	MJ NJ
Oil and gas		60°	API Rounded API "V" form 60°	RD V38, 40, 50
			API Buttress VAM	BU
Motion threads		29° 30°	Trapezoidal/DIN 103 ACME Stub ACME	TR AC SA

Insert types V - profile

- Advantages
 - Flexibility one insert can be used for several pitches.
 - Reduce or eliminate vibrations due to reduction in cutting pressure
 - Minimum tool inventory
- Disadvantages
 - Needs a preform diameter
 - Burr formation
 - The nose radii is designed to offer the smallest pitch, which reduces tool life

Insert types Full profile

- Advantages
 - Forms a complete thread profile, including the correct depth, bottom and top radii for a strong thread
 - High productivity due to elimination of subsequent operations.
 - In general this insert makes a cleaner thread which requires less deburring
- Disadvantages
 - Different inserts for every pitch and profile
 - As the insert is generating both the root and crest, the tool pressure can increase, putting more requirements on the setup

Insert types

Use extra stock/material for topping the thread

- When a full profile insert is used the blank should not be turned to exact diameter prior to the threading
- Add extra stock/material on the workpiece for topping the finish diameter of the thread
- Extra stock/material should be 0.03-0.07 mm (.001-.003 inch)

Infeed Three different types of infeed

Modified Flank infeed

Radial infeed

Alternating infeed

- The infeed method can have a significant impact on the thread machining process. It influences
 - Chip Control
 - Insert Wear
 - Thread Quality
 - Tool Life
- In practice, the machine tool, insert geometry, workpiece material and thread pitch influence the choice of infeed method

Infeed Modified flank infeed

- Chip is similar to that in conventional turning easier to form and guide
- Chip is thicker, but has contact with only one side of the insert
- Insert wear dominant on one flank
- Less heat is transferred to the insert
- First choice for most threading operations

Modified flank infeed

Infeed Opposite flank infeed

- Insert can cut using both flanks the chip can be steered in both directions
- Better chip control
- Helps to ensure continuous, troublefree machining, free from unplanned stoppages

Infeed Radial infeed

- Most commonly used method
- Makes a stiff "V" chip
- Even insert wear
- Insert tip exposed to high temperatures, which restricts depth of infeed
- Suitable for fine pitches
- Vibration possible and poor chip control in coarse pitches

Radial Infeed

Application Alternating infeed

- First choice for larger thread profiles
- Recommended for pitches larger than 5 mm (5 t.p.i)
- Special CNC machine program is required
- Chips are directed both ways, making control difficult
- Even insert wear and longest tool life in very coarse threads

Alternating flank infeed

Infeed Application

Decreasing depth per pass (constant chip area)

- First choice in all threading operations
- Most commonly used method to improve the machining result
- The first pass is the deepest
- Follows recommendation on infeed tables in catalog/calculator
- More "balanced" chip area
- Even load on insert
- Last pass around 0.07 mm (.003 inch)

Infeed Application

Constant depth per pass

- Each pass is of equal depth, regardless of number of passes
- More demanding on the insert
- Can offer better chip control
- Increases the required number of passes
- Should not be used for pitches larger than 1.5 mm or 16 t.p.i.
- A less-productive method

Three different geometries

All-around geometry First choice in most operations **F-geometry** Sharp geometry **C-geometry** Chip breaking geometry

- C-Geometry
- For best chip control use with modified flank infeed of about 1°

Geometry

Radial infeed C - Chip breaking geometry

Insert: 266RG-16UN01C180M 1125Pitch: 18 t.p.i. V_c: 500 sfm NAP: 6 Infeed: Radial

Geometry Modified flank C - Chip breaking geometry

Insert: 266RG-16UN01C180M 1125 Pitch: 18 t.p.i. V_c: 500 sfm NAP: 6

Infeed: Modified flank

Your success in focus