Welcome to: Lincoln College of Technology

RICK CALVERLEY

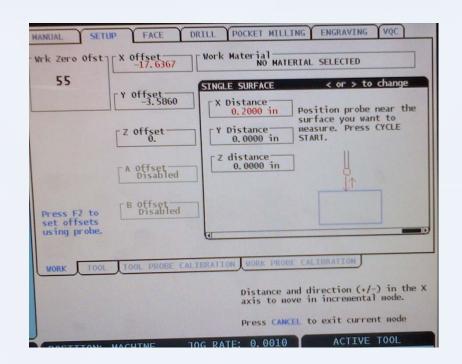
1. We machine a feature or complete part

- 1. We machine a feature or complete part
- 2. We check what we can on the machine

- 1. We machine a feature or complete part
- 2. We check what we can on the machine
- 3. We take the part out and check it some more

- 1. We machine a feature or complete part
- 2. We check what we can on the machine
- We take the part out and check it some more
- 4. We take it to the CMM for inspection

- 1. We machine a feature or complete part
- 2. We check what we can on the machine
- 3. We take the part out and check it some more
- 4. We take it to the CMM for inspection
- 5. QA gives report and adjustments made at machine



"but where is the manufacturing industry headed?"

http://www.youtube.com/watch?v=kCB4fEiyG Ro

Haas makes this simple in set up

But, we can build this inside our machine code....very simply

First, call the probe, position in WCS, and turn on the probe

T10 M6

G0 G90 G54 X-1. Y-1.

G43 H10 Z2.

G65 P9832

PROBE IS TOOL #10

POSITION IN WCS X-1. Y-1.

TURN ON TLO AND POSITION A SAFE DISTANCE IN Z

THIS IS CODE TO ORIENT AND INITIATE PROBE POWER

Next, use "Protected Position Move"

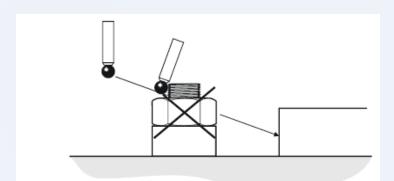
T10 M6

G0 G90 G54 X-1. Y-1.

G43 H10 Z2.

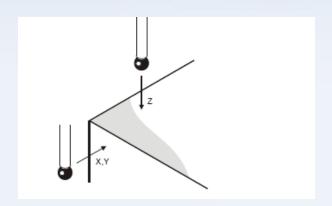
G65 P9832

G65 P9810 Z.5

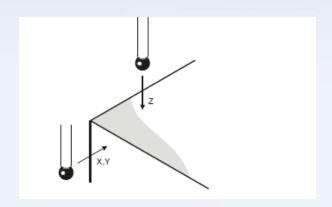

PROBE IS TOOL #10

POSITION IN WCS X-1. Y-1.

TURN ON TLO AND POSITION A SAFE DISTANCE IN Z

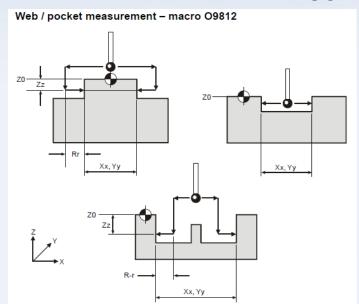

THIS IS CODE TO ORIENT AND INITIATE PROBE POWER

P9810 IS PROTECTED MOVES –AVOIDS PROBE DAMAGE


SINGLE AXIS MEASUREMENTS AND VARIABLES

T10 M6
G0 G90 G54 X-1. Y-1.
G43 H10 Z2.
G65 P9832
G65 P9810 Z.5
G65P9811Z0. (H.005)(S1-S6)(T10)(W1.)

SINGLE AXIS MEASUREMENTS AND VARIABLES



T10 M6
G0 G90 G54 X-1. Y-1.
G43 H10 Z2.
G65 P9832
G65 P9810 Z.5
G65P9811Z0. (H.005)(S1-S6)(T10)(W1.)

VARIABLES H=TOLERANCE OF FEATURE, IF FEATURE OT MESSAGE IS OUTPUT S=WCS UPDATE, S1 = G54, S2 = G55, ETC T=TOOL OFFSET UPDATE W= PRINT OR OUTPUT INSPECTION DATA

WEB POCKET MEASUREMENTS AND VARIABLES

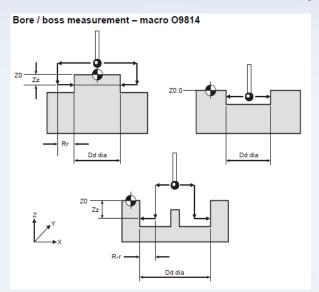
T10 M6

G0 G90 G54 X0. Y-1.

G43 H10 Z2.

G65 P9832

G65 P9810 Z.5


G65P9812X0. (H.005)(S1-S6)(T10)(W1.)

VARIABLES

H=TOLERANCE OF FEATURE, IF FEATURE OT MESSAGE IS OUTPUT
S=WCS UPDATE, S1 = G54, S2 = G55, ETC
T=TOOL OFFSET UPDATE
W= PRINT OR OUTPUT INSPECTION DATA

BORE/BOSS MEASUREMENTS AND VARIABLES

T10 M6

G0 G90 G54 X0. Y-1.

G43 H10 Z2.

G65 P9832

G65 P9810 Z-.5

G65P9814D0. 875(H.005)(S1-S6)(T10)(W1.)

VARIABLES

H=TOLERANCE OF FEATURE, IF FEATURE OT MESSAGE IS OUTPUT
S=WCS UPDATE, S1 = G54, S2 = G55, ETC
T=TOOL OFFSET UPDATE
W= PRINT OR OUTPUT INSPECTION DATA

PROBING TO COMPLETE ON MACHINE VERIFICATION

RICK CALVERLEY

